Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin.

نویسندگان

  • Derek Parsonage
  • P Andrew Karplus
  • Leslie B Poole
چکیده

Typical 2-Cys peroxiredoxins (Prxs) are ubiquitous peroxidases that are involved in peroxide scavenging and/or the regulation of peroxide signaling in eukaryotes. Despite their prevalence, very few Prxs have been reliably characterized in terms of their substrate specificity profile and redox potential even though these values are important for gaining insight into physiological function. Here, we present such studies focusing on Salmonella typhimurium alkyl hydroperoxide reductase C component (StAhpC), an enzyme that has proven to be an excellent prototype of this largest and most widespread class of Prxs that includes mammalian Prx I-Prx IV. The catalytic efficiencies of StAhpC (k(cat)/K(m)) are >10(7) M(-1).s(-1) for inorganic and primary hydroperoxide substrates and approximately 100-fold less for tertiary hydroperoxides, with the difference being exclusively caused by changes in K(m). The oxidative inactivation of AhpC through reaction with a second molecule of peroxide shows parallel substrate specificity. The midpoint reduction potential of StAhpC is determined to be -178 +/- 0.4 mV, a value much higher than most other thiol-based redox proteins. The relevance of these results for our understanding of Prx and the physiological role of StAhpC is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering of fluorescent reporters into redox domains to monitor electron transfers.

The rate of electron transfer through multicomponent redox systems is often monitored by following the absorbance change due to the oxidation of the upstream pyridine nucleotide electron donor (NADPH or NADH) that initiates the process. Such coupled assay systems are powerful, but because of problems regarding the rate-limiting step, they sometimes limit the kinetic information that can be obta...

متن کامل

Hydrogen peroxide-forming NADH oxidase belonging to the peroxiredoxin oxidoreductase family: existence and physiological role in bacteria.

Amphibacillus xylanus and Sporolactobacillus inulinus NADH oxidases belonging to the peroxiredoxin oxidoreductase family show extremely high peroxide reductase activity for hydrogen peroxide and alkyl hydroperoxides in the presence of the small disulfide redox protein, AhpC (peroxiredoxin). In order to investigate the distribution of this enzyme system in bacteria, 15 bacterial strains were sel...

متن کامل

Mutant AhpC peroxiredoxins suppress thiol-disulfide redox deficiencies and acquire deglutathionylating activity.

The bacterial peroxiredoxin AhpC, a cysteine-dependent peroxidase, can be converted through a single amino acid insertion to a disulfide reductase, AhpC*, active in the glutathione and glutaredoxin pathway. Here we show that, whereas AhpC* is inactive as a peroxidase, other point mutants in AhpC can confer the in vivo disulfide reductase activity without abrogating peroxidase activity. Moreover...

متن کامل

AhpF and other NADH:peroxiredoxin oxidoreductases, homologues of low Mr thioredoxin reductase.

A group of bacterial flavoproteins related to thioredoxin reductase contain an additional approximately 200-amino-acid domain including a redox-active disulfide center at their N-termini. These flavoproteins, designated NADH:peroxiredoxin oxidoreductases, catalyze the pyridine-nucleotide-dependent reduction of cysteine-based peroxidases (e.g. Salmonella typhimurium AhpC, a member of the peroxir...

متن کامل

Essential thioredoxin-dependent peroxiredoxin system from Helicobacter pylori: genetic and kinetic characterization.

Helicobacter pylori, an oxygen-sensitive microaerophile, contains an alkyl hydroperoxide reductase homologue (AhpC, HP1563) that is more closely related to 2-Cys peroxiredoxins of higher organisms than to most other eubacterial AhpC proteins. Allelic replacement mutagenesis revealed ahpC to be essential, suggesting a critical role for AhpC in defending H. pylori against oxygen toxicity. Charact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 24  شماره 

صفحات  -

تاریخ انتشار 2008